A MATHEMATICAL MODEL FOR TYPHOID TRANSMISSION DYNAMICS IN KWEEN DISTRICT OF UGANDA.

  • Type: Project
  • Department: Education
  • Project ID: EDU2498
  • Access Fee: ₦5,000 ($14)
  • Pages: 48 Pages
  • Format: Microsoft Word
  • Views: 439
  • Report This work

For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

ABSTRACT In this study, we have formulated a mathematical model based on a system of ordinary differential equations to study the dynamics of typhoid fever disease incorporating protection against infection. The existences of the steady states of the model are determined and the basic reproduction number is computed using the next generation matrix approach. Stability analysis of the model is carried out to determine the conditions that favour the spread of the disease in a given population.

A MATHEMATICAL MODEL FOR TYPHOID TRANSMISSION DYNAMICS IN KWEEN DISTRICT OF UGANDA.
For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

Share This
  • Type: Project
  • Department: Education
  • Project ID: EDU2498
  • Access Fee: ₦5,000 ($14)
  • Pages: 48 Pages
  • Format: Microsoft Word
  • Views: 439
Payment Instruction
Bank payment for Nigerians, Make a payment of ₦ 5,000 to

Bank GTBANK
gtbank
Account Name Obiaks Business Venture
Account Number 0211074565

Bitcoin: Make a payment of 0.0005 to

Bitcoin(Btc)

btc wallet
Copy to clipboard Copy text

500
Leave a comment...

    Details

    Type Project
    Department Education
    Project ID EDU2498
    Fee ₦5,000 ($14)
    No of Pages 48 Pages
    Format Microsoft Word

    Related Works

    ABSTRACT In this study, we have formulated a mathematical model based on a system of ordinary differential equations to study the dynamics of typhoid fever disease incorporating protection against infection. The existences of the steady states of the model are determined and the basic reproduction number is computed using the next generation... Continue Reading
    Abstract In this research work, Mathematical Model for Measles Transmission Dynamics in Luweero District of Uganda, SVEIR model was developed and analyzed. The model consists of five non liner ordinary differential equations. The effective reproductive number, (the number of secondary infections when a single effective individual is introduced... Continue Reading
    ABSTRACT In this research work, Mathematical Model for Measles Transmission Dynamics in Luweero District of Uganda, SVEIR model was developed and analyzed. The model consists of five non liner ordinary differential equations. The effective reproductive number, (the number of secondary infections when a single effective individual is introduced... Continue Reading
    ABSTRACT This project proposes a non – linear mathematical model to study the effect of irresponsible infected  immigrants on the spread of HIV/AIDS in a heterogeneous population with a constant recruitment of susceptible. The equilibrium points, stability analysis  and numerical simulation on the model are presented. It is realised that at... Continue Reading
    ABSTRACT This study proposes and analyzes a non-linear mathematical model for the dynamics of HIV/AIDS with treatment and vertical transmission. The equilibrium points of the model system are found and their stability is investigated. The model exhibits two equilibria namely, the disease-free and the endemic equilibrium. It is found that if the... Continue Reading
    ABSTRACT This study proposes and analyzes a non-linear mathematical model for the dynamics of HIV/AIDS with treatment and vertical transmission. The equilibrium points of the model system are found and their stability is investigated. The model exhibits two equilibria namely, the disease-free and the endemic equilibrium. It is found that if the... Continue Reading
    ABSTRACT This project proposes a non – linear mathematical model to study the effect of irresponsible infected  immigrants on the spread of HIV/AIDS in a heterogeneous population with a constant recruitment of susceptible. The equilibrium points, stability analysis  and numerical simulation on the model are presented. It is realised that at... Continue Reading
    ABSTRACT: Infectious  disease  has  become  a  source  of  fear  and  superstition  since  the first  ages  of  human  civilization.  In  this  study,  we  consider  the  Discrete  SIR  model for  disease  transmission  to  explain  the  use  of  this  model  and  also  show  significant explanation  as ... Continue Reading
    ABSTRACT: Infectious  disease  has  become  a  source  of  fear  and  superstition  since  the first  ages  of  human  civilization.  In  this  study,  we  consider  the  Discrete  SIR  model for  disease  transmission  to  explain  the  use  of  this  model  and  also  show  significant explanation  as ... Continue Reading
    ABSTRACT Simple population growth models involving birth rate, death rate, migration, and carrying capacity of the environment were considered. Furthermore, the particular case where there is discrete delay according to the sex involved in the population growth were treated. The equilibrium and stability analysis of each of the cases were... Continue Reading
    Call Us
    whatsappWhatsApp Us